Established in 1918, the Coachella Valley Water District is a government agency run by a five-member Board of Directors, elected at-large to represent the five divisions within CVWD’s service area. The directors serve four-year terms.

Board meetings are open to the public and generally held on the second and fourth Tuesday of each month at 9 a.m. at district offices. The first meeting of the month is typically held in Palm Desert and the second is held in Coachella. To confirm meeting details, call the water district or view the meeting agenda on the website.

The Water Quality Report on pages 6-9 is mailed to all bill payers within the district’s domestic water boundary, in accordance with state law. The 2011-12 Annual Review is produced by CVWD’s Communication & Legislation staff. It costs approximately 53 cents per issue to print and mail.
Message from the General Manager

Dear CVWD water user,

One silver lining in these hard economic times is our tendency to focus more on things of genuine and lasting value. Our tap water system is a perfect example.

Water from the tap is often taken for granted, in part because of the low cost. While $1 will buy you one bottle of water at the store, it will buy you 7,000 glasses of water from your kitchen faucet, delivery included.

Tap water offers the added benefit of providing public health protection, fire protection, support for the economy and the quality of life we enjoy. It’s truly the best deal around.

For the second year in a row, the water district’s Board of Directors chose not to consider an increase in domestic or sanitation rates. This has required a lot of belt tightening at the district, but none worse than what many residents continue to face.

Many residents don’t think about the factors that contribute to the cost of delivering high quality water to the homes and businesses in the valley. These factors include operation and maintenance of nearly 2,000 miles of pipeline, 100 wells and 60 reservoirs, water quality treatment and testing, rising energy costs and the need to invest in imported supplies to combat overdraft of local groundwater sources.

And, at CVWD, we do a lot more than provide high quality drinking water. We also provide Colorado River water to farmers and golf courses in the east valley, collect wastewater from homes and businesses and treat and recycle the water at six facilities throughout the valley. We are a stormwater protection agency and manage a groundwater replenishment program. All these areas of service are funded through rates collected in those areas.

When you consider the critical needs addressed by these different water-related services, the value far outweighs the cost.

In the past, water suppliers have often thought of themselves as the “silent service,” because much of what occurs in these different water-related services is out of sight and out of mind. The truth is that we are proud to provide these valuable services to our community without fanfare and we strive to do so in a professional, efficient and economical manner.

Tap water is more than a product, it’s a service that delivers public health, fire protection, support for the economy and quality of life for an average of $1 to $2 a day. It will always be one of the best values you can find.

Sincerely,

Steve Robbins,
General Manager-Chief Engineer
Groundwater facts

The Coachella Valley is blessed with a natural groundwater basin. In the early days of the valley, the aquifer was so full you needed only to dig a shallow hole to find water.

Today, our aquifer is in a state of overdraft, meaning more water is used each year than can be replaced by natural or artificial means.

The district is protecting its imported water supply to eliminate overdraft by expanding its replenishment program.

342,025 af — Amount of groundwater used in the Coachella Valley in 2011. All CVWD’s drinking water comes from the aquifer.

290,869 af — Amount of imported water replenished by CVWD and DWA in 2011

62,000 af — Average annual amount of water naturally replenished by rain and snow melt

2.5 million af — Water replenished by CVWD and DWA since 1973

5.3 million af — Estimated cumulative overdraft

39 million af — Estimated capacity of Coachella Valley’s groundwater basin

4 — Number of groundwater replenishment facilities in the Coachella Valley.

af = acre-feet; 1 acre-foot equals 325,851 gallons

Imported water, rain replenish Coachella Valley’s aquifer

For the second year in a row, the amount of water naturally and artificially replenished into the Coachella Valley groundwater basin was greater than what was used by homes and businesses, helping to close the gap on the overdrafted aquifer.

Collaborative efforts by Coachella Valley Water District and Desert Water Agency resulted in 290,869 acre-feet of imported water being returned to aquifer in 2011. An additional estimated amount of water from rain capture and snow melt also replenished the aquifer.

Last year was the first time since 1986 that the combined amount of replenished natural flows and imported water was greater than what was taken out. The amount replenished can vary greatly based on drought conditions, regulatory restrictions and other factors.

The amount of groundwater used valleywide in 2011 is estimated at 342,025, which is approximately 3,000 acre-feet less than what was used in 2010.

CVWD and DWA are State Water Contractors and replenish the aquifer at facilities near Whitewater and Desert Hot Springs. CVWD solely operates a separate replenishment facility and small pilot facility, both in the east valley.

The district’s groundwater replenishment program is partially funded by the Replenishment Assessment Charge, or RAC, which is paid by all large water users with private wells that pump more than 25 acre-feet of groundwater per year. CVWD is the largest RAC payer.

<table>
<thead>
<tr>
<th>Year</th>
<th>Natural replenishment estimated avg.</th>
<th>Artificial replenishment actual</th>
<th>Total replenishment</th>
<th>Valleywide pumped *</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>62,000</td>
<td>290,869</td>
<td>352,869</td>
<td>342,025</td>
<td>10,844</td>
</tr>
<tr>
<td>2010</td>
<td>62,000</td>
<td>298,941</td>
<td>360,941</td>
<td>345,136</td>
<td>15,805</td>
</tr>
<tr>
<td>2009</td>
<td>62,000</td>
<td>82,849</td>
<td>144,849</td>
<td>373,869</td>
<td>(229,020)</td>
</tr>
<tr>
<td>2008</td>
<td>62,000</td>
<td>15,984</td>
<td>77,984</td>
<td>395,207</td>
<td>(317,223)</td>
</tr>
<tr>
<td>2007</td>
<td>62,000</td>
<td>22,795</td>
<td>84,795</td>
<td>396,331</td>
<td>(311,536)</td>
</tr>
<tr>
<td>2006</td>
<td>62,000</td>
<td>121,508</td>
<td>183,508</td>
<td>395,920</td>
<td>(138,400)</td>
</tr>
<tr>
<td>2005</td>
<td>62,000</td>
<td>195,020</td>
<td>257,020</td>
<td>349,990</td>
<td>(166,970)</td>
</tr>
<tr>
<td>2004</td>
<td>62,000</td>
<td>22,258</td>
<td>84,258</td>
<td>388,275</td>
<td>(304,017)</td>
</tr>
<tr>
<td>2003</td>
<td>62,000</td>
<td>2,614</td>
<td>64,614</td>
<td>412,846</td>
<td>(348,232)</td>
</tr>
<tr>
<td>2002</td>
<td>62,000</td>
<td>40,528</td>
<td>102,528</td>
<td>389,566</td>
<td>(287,038)</td>
</tr>
<tr>
<td>10-year Average</td>
<td>62,000</td>
<td>109,337</td>
<td>171,337</td>
<td>378,917</td>
<td>207,580</td>
</tr>
</tbody>
</table>

* Excludes well pumpers of less than 25 acre-feet annually within CVWD’s area of benefit and well pumpers of less than 10 acre-feet annually in DWA’s area of benefit.

All numbers in acre-feet. An acre-foot of water is equal to 325,851 gallons, or enough water to cover one acre of land one foot deep.
Conservation programs help valley residents increase water efficiency

To date, more than 426,000 gallons of water have been saved through Coachella Valley Water District’s toilet rebate program, which was launched last year.

The toilet rebate program pays eligible customers up to $100 to replace an old toilet with a newer, more efficient one. Rebates continue to be offered to all eligible CVWD customers, with a limit of one toilet replacement per household.

Old toilets must have been manufactured prior to 1992 and consume more than 3 gallons of water per flush. Customers are responsible for installing the new toilet and must provide the district with a sales receipt and proof of recycling.

New program

A new indoor water conservation kit program will further help reduce indoor water waste and improve household fixture efficiency.

The kits include a kitchen swivel aerator, two bathroom sink aerators, a water flow testing bag, leak detection tablets and a water-efficient shower head. Kits are limited to one per household.

Landscape programs

The landscape rebate program continues to be overwhelmingly successful, paying qualifying participants $1 for each square foot of grass replaced, up to $1,000 for home owners and $10,000 for large landscape projects, such as those managed by cities or homeowner associations.

More than 740,000 square feet of grass has been converted to desert-friendly landscaping under the program since 2007.

A separate program offers rebates to customers who replace inefficient spray nozzles with water-saving smart nozzles. Home owners can receive up to $2.50 per nozzle for up to 80 nozzles; large landscape customers can qualify for up to 400 nozzles per project.

Smart irrigation controllers continue to be offered at a discounted price, including programming and installation for residential customers.

All of CVWD’s rebate and discount programs have specific eligibility requirements and maximum refund amounts. Funds for some programs are limited and offered on a first-come, first-served basis. For program details, eligibility requirements and applications, visit www.cvwd.org or call (760) 398-2651.

Ironwood Country Club in Palm Desert recently converted one of its homeowner associations from turf to desert-friendly landscaping. The country club also replaced all its sprinklers with water-saving new generation nozzles. Both projects were completed through CVWD’s landscape rebate program.

Conservation by the numbers

1.5 billion—Estimated gallons of water saved through the residential and large landscape smart controller programs.

742,000—Square feet of grass converted to desert-friendly landscaping through CVWD’s rebate program.

212 million—Estimated gallons of water saved through the landscape conversion program.

426,800—Estimated gallons of water saved during first year of CVWD’s toilet rebate program.

At 160 pages, Lush & Efficient Landscape Gardening in the Coachella Valley is packed with photos and information on hundreds of desert-friendly plants and trees. Cost is $15 and includes an interactive CD-ROM.

Order either publication using the postcard inside this Annual Review.
Recycled Water facts
The Coachella Valley Water District owns and operates six wastewater reclamation plants that receive a combined average of 18 million gallons of wastewater per day.

At three of the district’s six wastewater reclamation plants, the treated water is delivered to 16 customers, mostly golf courses, for irrigation.

9,622 af — Amount of recycled water delivered for irrigation in 2011.

12,776 af — Amount of blended recycled water and Colorado River water delivered for irrigation in 2011.

Is recycled water regulated? — Yes. The treatment, delivery and use of recycled water is strictly regulated by state and federal agencies.

What are the benefits of recycled water? — Using recycled water for irrigation reduces demand on our precious aquifer. In addition, the supply of wastewater isn’t affected by drought.

Award winning work
— The California Water Environment Association’s regional chapter named CVWD's largest plant as Plant of the Year. Other awards were given for Collection System, Plant Operator, Supervisor and Collection System Person of the Year.

The public education program that allows hundreds of area school children and adult groups to tour the plant each year earned the Public Education Award (large project) for the entire state.

af = acre-feet; 1 acre-foot equals 325,851 gallons

Recycled water program expands

More golf courses and other large landscape customers will be able to use non-potable water for irrigation as the district continues to expand access to the Mid-Valley Pipeline project.

“We’ve been encouraging the use of non-potable water for large landscape irrigation in the Coachella Valley since 1969,” said Olivia Bennett, non-potable water operations manager. “The Mid-Valley Pipeline project has increased the ability of golf courses and other users to have access to non-potable water. This in turn, reduces groundwater pumping by thousands of acre-feet per year, reducing demand on our aquifer.”

The district recently approved a non-potable water agreement with the City of Indian Wells to allow the Indian Wells Golf Resort to connect its two golf courses to the Mid-Valley pipeline and to use 1,995 acre-feet per year of canal water for irrigation.

The district also approved the connection of the Classic Club in Palm Desert to the Mid-Valley Pipeline project, allowing it to use a blend of canal water and recycled water for irrigation.

Once connected, the Classic Club will use about 1,000 acre-feet from the non-potable water delivery system for the golf course and landscape irrigation.

The Mid-Valley pipeline begins at Madison Street in Indio where the Coachella Canal crosses the Coachella Valley Stormwater Channel and ends at the district's largest wastewater treatment plant in Palm Desert.

The pipeline ensures there is enough non-potable water available for current and future customers by augmenting the recycled water supply with canal water when the recycled water supply runs out.

In 2011, the amount of recycled water from the district’s treatment plants totaled 9,622 acre-feet, up from 8,969 acre-feet in 2010. The total non-potable water use, which includes both recycled water and canal water, totaled 12,776 acre-feet, up from 12,144 acre-feet in 2010.

The district will continue to encourage the use of non-potable water for irrigation purposes.

“This is an exciting time for the Non-potable Water Program,” Bennett said. “With the Mid-Valley Pipeline project, we are capable of expanding the program to serve up to 50 golf courses in the Mid-Valley area.”
Stormwater protection projects moving forward

Coachella Valley Water District recently took over the lead role for the Thousand Palms Flood Control Project, allowing the district to finally move forward with completing the design of the project. CVWD and the U.S. Army Corps of Engineers have been jointly working on the project since 1994.

The project involves the construction of a series of levees and channels to protect 9,500 residents living on 2,800 acres of land from alluvial flooding.

Lack of federal funding has stalled the nearly completed design phase of the project. By taking over the lead role, CVWD can move forward with the design without federal funding. CVWD has funded $793,500 of the $3.2 million expended to date.

An additional $1.5 million has been authorized to finish the design and environmental work. Unlike water and sewer services, stormwater protection is not funded through rates or fees, but rather through property tax.

Thousand Palms is one of several areas designated as “unprotected,” including North Cathedral City, North Indio, the Salton City area and most of the rural eastern Coachella Valley.

Below are some of the other stormwater protection projects in the works:

- An Eastern Coachella Valley Stormwater Master Plan that outlines the areas needing protection is being developed. A time line has not yet been established for when work will be completed.
- A North Indio Flood Control Master Plan is being developed. The plan includes the review of design work started in 2003, which is now 90 percent complete and scheduled to be completed in the 2012-13 fiscal year.
- A detailed hydraulic analysis of the Coachella Valley Stormwater Channel from Coachella to the Salton Sea is nearly 70 percent complete. The objective is to update the hydraulic model, identify any levee breach and inundation areas and develop revised flood insurance rate maps for the City of Coachella and Riverside County.

Did you know?

Coachella Valley Water District provides regional flood control across nearly 600 square miles within the Coachella Valley. The district’s goal is to ensure safe conveyance of floodwater through its stormwater system. Rain coming down directly onto a city or an unincorporated area is the responsibility of either the city or county.

The district’s stormwater system is composed of 134 miles of flood protection facilities throughout the Coachella Valley.

The backbone is the 49-mile stormwater channel that conveys rain and snow melt from Whitewater to the Salton Sea. This channel, often referred to as “the wash,” is actually the Whitewater River’s riverbed. It isn’t often thought of as a riverbed, because it’s dry most days of the year.

This channel is named the Whitewater River Stormwater Channel to the west of Washington Street and the Coachella Valley Stormwater Channel to the east.

This main channel was built to withstand a Standard Project Flood, or approximately 82,000 cubic feet per second of water flow. This is greater than a 100-Year Flood.

It is not uncommon for development, such as golf courses or roads, to be built within storm protection facilities. However, developers and cities do so knowing that they are building in a river bed and that the facility’s main purpose is to carry stormwater away from mountains, homes and businesses.

As part of Palm Desert High School’s campus expansion, the slopes along the Whitewater River Stormwater Channel were lined with concrete. This provides added flood protection to the school in the event of heavy water flow down the channel. Many portions of the channel are lined with concrete, sometimes hidden underneath golf courses, landscaping or other material to prevent erosion and provide added protection.
2012 Domestic Water Quality Report

Coachella Valley Water District is committed to delivering high quality drinking water that meets stringent government standards. This annual report documents that the water served to all CVWD water users (obtained from wells drilled into the Coachella Valley's vast groundwater basin) meets state (California Department of Public Health) and federal (U.S. Environmental Protection Agency) drinking water quality standards.

CVWD is tasked with ensuring that drinking water standards are met. Highly trained employees monitor the water systems and collect drinking water samples that are tested at the district’s state-certified laboratory. A few specialized tests are performed by other certified laboratories. In addition to the detected constituents listed in the table on pages 8-9, CVWD’s Water Quality staff monitors for more than 100 other regulated and unregulated chemicals that are not detected during this monitoring.

CVWD is governed by a locally elected, five-member board of directors who normally meet in public session at 9 a.m., on the second and fourth Tuesdays of each month. Meeting locations rotate between the district’s Coachella office at Avenue 52 & Highway 111 and the Palm Desert Administration Building at 75-515 Hovley Lane East. Call the district to confirm meeting time, date and location.

The following report is written and provided in accordance with California Department of Public Health requirements:

While all of CVWD’s domestic water supply meets state and federal standards, drinking water supplied to some service areas does contain low levels of naturally occurring arsenic. The arsenic standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. All drinking water delivered by CVWD last year complies with the 10 microgram per liter (ug/L) maximum contaminant level (MCL).

Radon is a naturally occurring, radioactive gas — a byproduct of uranium — that originates underground but is found in the air. Radon moves from the ground into homes primarily through cracks and holes in their foundations. While most radon enters the home through soil, radon from tap water typically is less than two percent of the radon in indoor air.

The U.S. Environmental Protection Agency (USEPA) has determined that breathing radon gas increases an individual’s chances of developing lung cancer, and has proposed a MCL of 300 picoCuries per liter (pCi/L) for radon in drinking water. This proposed standard is far less than the 4,000 pCi/L in water that is equivalent to the radon level found in outdoor air. The radon level in district wells ranges from none detected to 460 pCi/L, significantly lower than that found in the air you breathe.

Nitrate in drinking water at levels above 45 milligrams per liter (mg/L) is a health risk for infants younger than six months old. High nitrate levels in drinking water can interfere with the capacity of the infant’s blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask for advice from your health care provider.

Nitrate levels in district wells ranges from no detection to 39 mg/L, which is below the maximum contaminant level. If present, elevated levels of lead can cause serious health problems, especially...
for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

Coachella Valley Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds before using water for drinking or cooking. You can capture this flushed water in a container and use it for watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

As noted, all drinking water served by CVWD comes from wells. The California Department of Public Health requires water agencies to state, however, “the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.”

“Contaminants that may be present in source water include:

• Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

• Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

• Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

• Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run off and septic systems.

• Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA and the state Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.”

Department regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. “Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPAS Safe Drinking Water Hotline (1-800-426-4791) or the National Safety Council Radon Hotline (1-800-SOS-RADON).”

Drinking Water Source Water Assessments:

The district has conducted source water assessments that provide information about the vulnerability of district wells to contamination. In 2002, CVWD completed a comprehensive source water assessment that evaluated all groundwater wells supplying the district’s six public water systems. An assessment is performed on each new well added to CVWD’s system. Groundwater from these district wells are considered vulnerable to activities associated with urban and agricultural uses.

Urban land uses include the following activities: known contaminant plumes, dry cleaners, underground storage tanks, septic systems, automobile gas stations (including historic), automobile repair shops, historic waste dumps/landfills, illegal/unauthorized dumping, sewer collection systems and utility stations’ maintenance areas.

Agricultural land uses include the following activities: irrigation/groundwater, irrigated crops, pesticide/fertilizer/ petroleum and transfer areas. The following activities have been associated with detected contaminants: known contaminant plumes, dry cleaners and irrigated crops.

Drinking water supplied by CVWD’s wells to our communities complies with state and federal drinking water quality standards.

Chromium-6 in tap water

There’s been some talk in the media recently about chromium-6 in tap water. CVWD’s tap water does contain this form of chromium, which comes from naturally occurring minerals dissolved in local groundwater at levels that meet all state and federal drinking water standards.

While conflicting scientific studies exist for whether chromium-6 poses a health risk when consumed in low levels, CVWD encourages its water users to not overreact and consider the following facts:

• The current national standard for all forms of chromium in tap water and bottled water is 100 parts per billion (ppb). One ppb is equivalent to a single drop in 10,000 gallons.
• California’s current drinking water standard is twice as strict at 50 ppb.
• CVWD’s drinking water averages 9 ppb of chromium-6.

• Experts used by federal agencies to review health risks have identified recent rodent studies that indicate chromium-6 is unlikely to pose a health risk when consumed in the low levels found in tap water.

• California risk assessors have been encouraged to consider this new research before regulators adopt a new standard specific to chromium-6 sometime in 2014.

• CVWD is co-funding a nationally supported study to test various technologies to remove chromium-6 from water, in the event a standard is set below levels found in the valley’s groundwater.
CWD 2012 Domestic Water Quality Summary
(Covering the reporting period January - December 2011)

CWD analyzed more than 18,000 water samples last year to ensure that your drinking water meets the state and federal standards. Every year, the district is required to analyze a select number of these samples for more than 100 regulated and unregulated substances. This table lists these substances that were detected in the district’s four service areas. Gray bars indicate no substance was detected or existing data is no longer reportable. The data on the chart, which summarizes results of the most recent monitoring completed between 2001 and 2011, shows that CWD continues to deliver drinking water that meets state and federal water quality standards. To read this table: First, determine in which service area you live (columns 4-7). Then move down the column, comparing the detection level of each chemical or other contaminant with the Public Health Goal, Maximum Contaminant Level Goal and Maximum Contaminant Level (columns 2-3). For example, if you live in a La Quinta and want to know the level of fluoride detected in your service area, you would look down the Gene Communities column and stop at the Fluoride row. The average fluoride level in that service area is 0.6 mg/L with the range of results varying between 0.2 mg/L and 1.0 mg/L. Compare these values to the Maximum Contaminant Level in Column 3. Fluoride levels in this water comply with the Maximum Contaminant Level of 0.7 mg/L. The range can show a level above the Maximum Contaminant Level and still comply with the drinking water standard when compliance is based on average levels found in each water source.

Definitions & Abbreviations
AI or Regulatory Action Level — The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. MCL or Maximum Contaminant Level — The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set to protect the health of non-immunocompromised people. Secondary MCLs are set to protect the odor, taste and appearance of drinking water. MCLG or Maximum Contaminant Level Goal — Level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. MRD or Maximum Residual Disinfectant Level Goal – Level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. NL or Notification Level — None detected.

Footnotes: (1) Includes the communities of Rancho Mirage, Thousand Palms, Palm Desert, Indian Wells, La Quinta and portions of Bermuda Dunes, Cathedral City, Indio, Oasis, Roosevelt County, Thermal and Vale in. (2) Unregulated contaminants are those for which the EPA and the California Department of Public Health have not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist both regulatory agencies in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. (3) The reported average represents the highest running annual average based on distribution system monitoring. (4) Regulated samples are 100 percent or levels for samples collected from faucets in users’ homes. (5) Systems that collect 40 or more samples per month. (6) Systems that collect less than 40 samples per month. (7) Although an individual sample may exceed the MCL, compliance is based on a running annual average. The average reported is the highest running annual average for distributed water. (8) Values listed are the upper and lower benchmark for consumer acceptance contaminant levels. (9) In 2011, the Thermal, Indio, Oasis and Oasis service area was consolidated into the Gene Communities service area.
Infrastructure projects improve drinking water service

The district worked this year to improve domestic water infrastructure throughout the Coachella Valley with an emphasis on improving access in rural areas to safe drinking water and crucial fire protection.

Salton City
About 3,100 Salton City residents have more than double the amount of domestic water storage after the construction by the district of a new 2.5-million-gallon reservoir.

The area had been dependent on a 1-million-gallon reservoir for its storage needs. During hotter months the amount the district had been able to keep in reserve — a crucial component of fire fighting capabilities — dropped to less than desired levels.

The $1.7 million project was completed in December. The original reservoir will remain available as a backup for about a year before being taken off line and refurbished.

Desert Hot Springs
A damaged and unreliable domestic water well in Desert Hot Springs was shut down and a new well drilled to serve the Sky Valley area.

The new well, which is 1,040 feet deep, will go into operation in July 2012. District crews constructed the well's pumping plant and provided additional engineering and inspection services.

Mecca
Approximately 3,500 feet of aging domestic water pipes were replaced in connection with a Riverside County street improvement project.
Grants help fund sewer and domestic water projects

Families living in a mobile home park in an unincorporated area of eastern Riverside County will have access to safe drinking water and sanitary sewer services, as a result of a joint project by Desert Empire Homes, Inc., Coachella Valley Water District and County of Riverside Redevelopment Agency.

The project was funded largely by grants from U.S. Department of Agriculture Rural Development’s Water and Waste Disposal Program.

The $6.3 million project will provide water and sewer infrastructure extensions and connections from systems operated by CVWD to the Mountain View Estates Mobile Home Park in Thermal.

The county’s redevelopment agency had been working to relocate residents from the existing Desert Mobile Home Park, known as Duroville, to Mountain View Estates. The new park currently has 157 mobile homes and is expected to expand by nearly 400 mobile home lots.

Most of the mobile home parks in the lower Coachella Valley have aging septic systems and individual wells that provide drinking water that does not meet government water quality standards.

All drinking water provided by CVWD meets state and federal water quality standards.

Thermal

Earlier this year, CVWD completed work with the county Economic Development Agency to provide water and sewer to the new Thermal Sheriff’s Station and Thermal Fire Station.

EDA paid for most of the $12.4 million in water and sewer work with the district contributing additional funds to upsize the sewer to provide for future growth in the area.

Keep medications out of the water system

Everything CVWD customers flush down their toilets and rinse down drains travels to a wastewater treatment plant and, in some cases, is reclaimed and sent to golf courses for irrigation use. Not all compounds and drugs are removed from this treatment process and trace amounts can still be detected.

While there is no evidence that trace amounts from medications pose a risk to human health, it’s prudent to control what we put into the wastewater system.

Limiting what you put down the drain is the easiest way to start!

What you can do to help

Throw medicines in the trash after grinding them up and mixing with an undesirable substance, such as coffee grounds or kitty litter, so they are unrecognizable to children or anyone intentionally searching your trash.

Keep fats, oils and greases out of your pipes

Improperly disposed fats, oils and greases are a common cause of sewer overflows and backups both in the home and throughout the sewer system.

Additionally, they cause expensive damage to CVWD’s wastewater reclamation facilities.

What you can do to help

- Never put grease down sink drains or garbage disposals.

- Scrape hardened grease into the trash can for proper disposal.
Paying your bill

Pay online with a credit card
Customers can now view bills and pay them online using a credit card. Visit the Manage My Account section of the website at www.cvwd.org/service/payment.php.

Automatic electronic payment
The district also offers the convenience of having your monthly payment automatically deducted from your checking account. Simply complete an Automatic Payment Service Form, available at either office or on our website at www.cvwd.org/service/payment.php.

Electronic notification when bill is due
Save paper by enrolling in our electronic notification program and be notified by e-mail when your new bill is available to view online.

Pay by phone
Using what is known as an interactive voice response (IVR) system, you can make a payment and review account information over the phone. You will need your 12-digit account number, located in the upper right-hand corner of your paper billing statement. Call (760) 391-9600

Pay by mail
Mailed payments should be sent to P.O. Box 5000, Coachella, CA 92236.

Pay in person
Drop boxes are available at offices in Palm Desert (75-525 Hovley Lane East) and Coachella (85-995 Avenue 52). The Palm Desert drop box is open 24 hours a day.

Rate Summary

As of July 1, 2011(1)

<table>
<thead>
<tr>
<th>Domestic Water Base Rate</th>
<th>Monthly charge per 100 cubic feet</th>
<th>Monthly charge 3/4" meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Area 1 — Majority of the district, except areas noted below</td>
<td>$1.12</td>
<td>$7.00</td>
</tr>
<tr>
<td>Rate Area 2 — Includes Sky Valley & Indio Hills</td>
<td>$1.35</td>
<td>$7.50</td>
</tr>
<tr>
<td>Rate Area 3 — Includes east Salton Sea areas of North Shore and Bombay Beach</td>
<td>$1.64</td>
<td>$7.50</td>
</tr>
<tr>
<td>Rate Area 4 — Includes Salton City, Desert Beach and Desert Shores</td>
<td>$1.42</td>
<td>$7.50</td>
</tr>
<tr>
<td>Rate Area 5 — Areas outside boundaries of the district, but served by the improvement district</td>
<td>$1.69</td>
<td>$17.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tiers</th>
<th>Base Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1: Excellent</td>
<td>90% Base Rate</td>
</tr>
<tr>
<td>Tier 2: Efficient</td>
<td>Base Rate</td>
</tr>
<tr>
<td>Tier 3: Inefficient</td>
<td>Base Rate x 1.5</td>
</tr>
<tr>
<td>Tier 4: Wasteful</td>
<td>Base Rate x 2</td>
</tr>
<tr>
<td>Tier 5: Excessive</td>
<td>Base Rate x 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residential Sanitation</th>
<th>Monthly charge per dwelling unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Area 80 (includes ID 53, 54, 57, the cities of Palm Desert, Cathedral City, Rancho Mirage and City of Indian Wells)</td>
<td>$24.50</td>
</tr>
<tr>
<td>Service Area 81 (includes area along I-10 from Thousand Palms to Indio)</td>
<td>$27.65</td>
</tr>
<tr>
<td>Service Area 41 (bounded generally by Jackson, Calhoun and Avenues 52 and 56)</td>
<td>$28.05</td>
</tr>
<tr>
<td>La Quinta, PGA West and Mecca</td>
<td>$29.05</td>
</tr>
<tr>
<td>Bombay Beach</td>
<td>$31.85</td>
</tr>
<tr>
<td>North Shore Beach</td>
<td>$32.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irrigation Water</th>
<th>Charge per acre-foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>$27.45</td>
</tr>
<tr>
<td>Golf courses & other non-agriculture</td>
<td>$37.15</td>
</tr>
<tr>
<td>Groundwater recharge</td>
<td>$74.00</td>
</tr>
<tr>
<td>Construction</td>
<td>$140.00</td>
</tr>
<tr>
<td>Quagga mussel mitigation surcharge</td>
<td>$5.75</td>
</tr>
<tr>
<td>Gate charge, per day</td>
<td>$11.50</td>
</tr>
</tbody>
</table>

(1) This table represents water rates for the 2011-12 fiscal year. At the time this publication was printed, the water district’s Board of Directors had not yet approved the 2012-13 rate structure, pending public meetings. For confirmation of the most up-to-date rates, call CVWD at (760) 398-2651 or visit www.cvwd.org/service/rates.php.
Comparative Condensed Balance Sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>June 30, 2011</th>
<th>June 30, 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current assets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash and investments</td>
<td>$264,757,846</td>
<td>$201,555,763</td>
</tr>
<tr>
<td>Accounts receivable, inventory, prepaid expenses & other</td>
<td>34,762,840</td>
<td>43,268,761</td>
</tr>
<tr>
<td>Total</td>
<td>$299,520,686</td>
<td>$244,824,524</td>
</tr>
<tr>
<td>Property, plant & equipment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participating Equity -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-American Canal & distribution system</td>
<td>34,874,505</td>
<td>34,874,505</td>
</tr>
<tr>
<td>State Water Project</td>
<td>75,032,524</td>
<td>152,688,182</td>
</tr>
<tr>
<td>Land, facilities & equipment</td>
<td>1,505,831,061</td>
<td>1,307,973,903</td>
</tr>
<tr>
<td></td>
<td>1,615,738,090</td>
<td>1,495,536,590</td>
</tr>
<tr>
<td>Accumulated amortization & depreciation</td>
<td>(481,046,307)</td>
<td>(441,714,265)</td>
</tr>
<tr>
<td>Construction work in progress</td>
<td>44,529,463</td>
<td>13,120,345</td>
</tr>
<tr>
<td>Total</td>
<td>$1,779,221,246</td>
<td>$1,066,942,670</td>
</tr>
<tr>
<td>Assets restricted for development & other purposes</td>
<td>5,594,405</td>
<td>153,476,898</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$1,544,336,337</td>
<td>$1,465,244,092</td>
</tr>
</tbody>
</table>

Liabilities & Equity

<table>
<thead>
<tr>
<th>Liabilities & Equity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Current liabilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable</td>
<td>$13,276,584</td>
<td>$6,647,504</td>
</tr>
<tr>
<td>Customer advances & deposits</td>
<td>3,347,920</td>
<td>3,766,733</td>
</tr>
<tr>
<td>Accrued salaries, interest, deferral & other expenses</td>
<td>5,334,415</td>
<td>7,632,454</td>
</tr>
<tr>
<td>Total</td>
<td>$21,958,919</td>
<td>$18,046,691</td>
</tr>
<tr>
<td>Long-term liabilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Water Project & other</td>
<td>8,833,064</td>
<td>5,405,191</td>
</tr>
<tr>
<td>Bonds payable & certificates of participation</td>
<td>1,706,289</td>
<td>9,965,000</td>
</tr>
<tr>
<td>Total</td>
<td>$10,539,353</td>
<td>$15,370,191</td>
</tr>
<tr>
<td>Total liabilities</td>
<td>$32,498,272</td>
<td>$33,416,882</td>
</tr>
<tr>
<td>Taxpayers’ equity in assets</td>
<td>$1,511,838,065</td>
<td>$1,431,827,210</td>
</tr>
<tr>
<td>Total Liabilities & Equity</td>
<td>$1,544,336,337</td>
<td>$1,465,244,092</td>
</tr>
</tbody>
</table>

Condensed Statement of Revenues & Expenses

Fiscal year ended June 30, 2011

Revenues

<table>
<thead>
<tr>
<th></th>
<th>Canal Water</th>
<th>Domestic</th>
<th>Sanitation</th>
<th>Stormwater</th>
<th>Recharge</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water sales</td>
<td>$10,856,327</td>
<td>$70,188,162</td>
<td>$159,614</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$81,204,103</td>
</tr>
<tr>
<td>Service charges</td>
<td>$1,131,077</td>
<td>$950,273</td>
<td>$36,990,449</td>
<td>0</td>
<td>17,633,740</td>
<td>0</td>
<td>56,705,539</td>
</tr>
<tr>
<td>Availability charges</td>
<td>1,474,835</td>
<td>$661,883</td>
<td>$127,943</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,264,661</td>
</tr>
<tr>
<td>Taxes</td>
<td>1,930,564</td>
<td>2,623,219</td>
<td>3,015,447</td>
<td>11,095,870</td>
<td>1,036,928</td>
<td>11,735,849</td>
<td>73,271,926</td>
</tr>
<tr>
<td>Interest</td>
<td>883,166</td>
<td>482,394</td>
<td>3,176,869</td>
<td>1,036,928</td>
<td>1,036,928</td>
<td>0</td>
<td>6,793,329</td>
</tr>
<tr>
<td>Other revenues</td>
<td>8,831,664</td>
<td>482,394</td>
<td>3,176,869</td>
<td>1,036,928</td>
<td>1,036,928</td>
<td>0</td>
<td>6,793,329</td>
</tr>
<tr>
<td>Total</td>
<td>$24,460,585</td>
<td>$73,048,806</td>
<td>$47,581,420</td>
<td>$17,812,614</td>
<td>$63,839,324</td>
<td>$23,793,565</td>
<td>$250,536,314</td>
</tr>
</tbody>
</table>

Expenses

<table>
<thead>
<tr>
<th></th>
<th>Canal Water</th>
<th>Domestic</th>
<th>Sanitation</th>
<th>Stormwater</th>
<th>Recharge</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation & maintenance</td>
<td>$13,790,706</td>
<td>$49,522,394</td>
<td>$24,223,102</td>
<td>$5,709,434</td>
<td>$32,634,770</td>
<td>$1,842,414</td>
<td>$127,722,820</td>
</tr>
<tr>
<td>General & administration</td>
<td>2,623,219</td>
<td>940,850</td>
<td>4,060,878</td>
<td>730,267</td>
<td>282,000</td>
<td>11,0130</td>
<td>18,201,344</td>
</tr>
<tr>
<td>Other</td>
<td>747,580</td>
<td>3,015,447</td>
<td>1,909,397</td>
<td>174,767</td>
<td>0</td>
<td>4,636,569</td>
<td>10,798,620</td>
</tr>
<tr>
<td>Depreciation</td>
<td>802,273</td>
<td>13,772,120</td>
<td>11,095,870</td>
<td>2,335,008</td>
<td>420,458</td>
<td>11,735,849</td>
<td>40,161,758</td>
</tr>
<tr>
<td>Reserves</td>
<td>6,496,807</td>
<td>2,665,005</td>
<td>8,863,138</td>
<td>30,502,096</td>
<td>4,477,603</td>
<td>53,966,812</td>
<td>250,536,314</td>
</tr>
<tr>
<td>Total</td>
<td>$24,460,585</td>
<td>$73,048,806</td>
<td>$47,581,420</td>
<td>$17,812,614</td>
<td>$63,839,324</td>
<td>$23,793,565</td>
<td>$250,536,314</td>
</tr>
</tbody>
</table>

(1) Includes the taxpayers’ equity in canal and irrigation distribution facilities, wells and reservoirs, treatment plants and stormwater facilities. This value includes facilities paid for by others and donated to the district. The value has been reduced by any outstanding debt (liabilities).

(2) Represents the consolidation of the General and Fleet Funds into the statements for Generally Accepted Accounting Principles (GAAP) reporting purposes.
Project would extend and improve canal system

Coachella Valley Water District is researching the possibility of extending the Coachella Canal system to landowners in Oasis who currently don't have access to canal water.

The project, which includes new pipelines, pump stations, a reservoir in lieu of the existing Oasis Tower and two additional elevated reservoirs, would also provide more reliable service to those in the region who already have access.

Under the proposed expansion plan, slightly more than 6,500 acres of land inside and adjacent to Improvement District 1 (ID1) would gain access to canal water.

Total cost is preliminarily estimated at $25.5 million. Therefore, an assessment district is the most likely funding mechanism for capital improvements.

A significant majority of affected property owners would need to support the project before the Board of Directors moves forward.

There has been positive feedback at public workshops so far, prompting CVWD to send a survey to gauge the true level of support.

Participants in the survey will receive estimated per-acre annual costs for an assessment district and the anticipated canal water rates.

Expansion of deliveries to these groups could reduce groundwater consumption by almost 20,000 acre-feet. Converting more farmland from using groundwater for irrigation to the use of imported Colorado River water is one of the goals stated in the Coachella Valley Water Management Plan.

Crop Report

(Covering the reporting period January - December 2011)

Crop production on Coachella Valley land irrigated with Colorado River water

Value of year’s production: $544,980,898
Total acreage irrigation (includes double cropping): 62,909
Average gross value per acre: $8,663

<table>
<thead>
<tr>
<th>Crop</th>
<th>Acreage</th>
<th>Yield in tons</th>
<th>Value per acre</th>
<th>Total value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit</td>
<td>25,926</td>
<td>182,684</td>
<td>$8,653</td>
<td>224,341,692</td>
</tr>
<tr>
<td>Dates(1)</td>
<td>8,795</td>
<td>25,325</td>
<td>$5,599</td>
<td>43,229,570</td>
</tr>
<tr>
<td>Figs</td>
<td>155</td>
<td>1,782</td>
<td>$10,316</td>
<td>1,598,903</td>
</tr>
<tr>
<td>Grapes (table)(1)</td>
<td>8,439</td>
<td>55,158</td>
<td>$11,462</td>
<td>94,077,075</td>
</tr>
<tr>
<td>Grapefruit(1)</td>
<td>845</td>
<td>12,377</td>
<td>$6,872</td>
<td>5,772,428</td>
</tr>
<tr>
<td>Lemons & Limes(1)</td>
<td>4,253</td>
<td>59,893</td>
<td>$11,794</td>
<td>497,112,25</td>
</tr>
<tr>
<td>Mangos</td>
<td>138</td>
<td>1,587</td>
<td>$10,316</td>
<td>1,423,539</td>
</tr>
<tr>
<td>Olives</td>
<td>84</td>
<td>966</td>
<td>$10,316</td>
<td>866,502</td>
</tr>
<tr>
<td>Oranges & Tangerines(1)</td>
<td>2,762</td>
<td>18,419</td>
<td>$6,219</td>
<td>15,777,390</td>
</tr>
<tr>
<td>Peaches(1)</td>
<td>66</td>
<td>221</td>
<td>$11,587</td>
<td>428,734</td>
</tr>
<tr>
<td>Pumpkin</td>
<td>26</td>
<td>164</td>
<td>$4,297</td>
<td>111,712</td>
</tr>
<tr>
<td>Strawberries</td>
<td>363</td>
<td>6,793</td>
<td>$31,252</td>
<td>113,446,614</td>
</tr>
<tr>
<td>Vegetables</td>
<td>25,906</td>
<td>394,841</td>
<td>$8,257</td>
<td>213,904,048</td>
</tr>
<tr>
<td>Artichokes</td>
<td>723</td>
<td>5,322</td>
<td>$8,405</td>
<td>6,077,076</td>
</tr>
<tr>
<td>Beans</td>
<td>916</td>
<td>5,016</td>
<td>$6,993</td>
<td>6,405,871</td>
</tr>
<tr>
<td>Broccoli</td>
<td>1,559</td>
<td>9,557</td>
<td>$4,595</td>
<td>7,164,264</td>
</tr>
<tr>
<td>Carrots</td>
<td>1,992</td>
<td>83,664</td>
<td>$6,510</td>
<td>129,670,920</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>1,080</td>
<td>7,888</td>
<td>$6,092</td>
<td>6,578,859</td>
</tr>
<tr>
<td>Celery</td>
<td>478</td>
<td>15,694</td>
<td>$14,335</td>
<td>68,852,076</td>
</tr>
<tr>
<td>Corn (sweet)</td>
<td>2,747</td>
<td>21,701</td>
<td>$3,476</td>
<td>9,548,572</td>
</tr>
<tr>
<td>Eggplant</td>
<td>262</td>
<td>2,497</td>
<td>$8,729</td>
<td>2,289,621</td>
</tr>
<tr>
<td>Greens (kale & parsley)</td>
<td>176</td>
<td>1,109</td>
<td>$4,297</td>
<td>756,202</td>
</tr>
<tr>
<td>Herbs & Spices</td>
<td>838</td>
<td>17,182</td>
<td>$5,684</td>
<td>4,762,948</td>
</tr>
<tr>
<td>Lettuce</td>
<td>3,795</td>
<td>37,191</td>
<td>$2,944</td>
<td>111,172,176</td>
</tr>
<tr>
<td>Melons</td>
<td>642</td>
<td>18,618</td>
<td>$7,830</td>
<td>50,926,860</td>
</tr>
<tr>
<td>Okra</td>
<td>656</td>
<td>4,133</td>
<td>$4,297</td>
<td>2,818,570</td>
</tr>
<tr>
<td>Onions (dry & green)</td>
<td>212</td>
<td>1,863</td>
<td>$4,468</td>
<td>947,284</td>
</tr>
<tr>
<td>Oriental vegetables</td>
<td>1,913</td>
<td>16,643</td>
<td>$7,821</td>
<td>149,617,147</td>
</tr>
<tr>
<td>Misc. vegetables</td>
<td>261</td>
<td>1,644</td>
<td>$4,297</td>
<td>1,122,113</td>
</tr>
<tr>
<td>Peppers (bell & chili)</td>
<td>5,639</td>
<td>117,500</td>
<td>$17,849</td>
<td>100,650,366</td>
</tr>
<tr>
<td>Potatoes</td>
<td>714</td>
<td>9,211</td>
<td>$4,404</td>
<td>3,149,449</td>
</tr>
<tr>
<td>Radishes</td>
<td>324</td>
<td>5,546</td>
<td>$4,487</td>
<td>1,454,052</td>
</tr>
<tr>
<td>Spinach</td>
<td>550</td>
<td>8,053</td>
<td>$10,621</td>
<td>5,841,519</td>
</tr>
<tr>
<td>Squash</td>
<td>219</td>
<td>1,029</td>
<td>$4,131</td>
<td>904,755</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>210</td>
<td>3,780</td>
<td>$11,700</td>
<td>2,457,000</td>
</tr>
<tr>
<td>Forage</td>
<td>2,720</td>
<td>20,910</td>
<td>$479</td>
<td>1,302,664</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>588</td>
<td>5,704</td>
<td>$1,057</td>
<td>621,692</td>
</tr>
<tr>
<td>Sudan grass</td>
<td>831</td>
<td>3,823</td>
<td>$635</td>
<td>527,519</td>
</tr>
<tr>
<td>Irrigated pasture(2)</td>
<td>1,301</td>
<td>11,384</td>
<td>$118</td>
<td>1,534,535</td>
</tr>
<tr>
<td>Nursery</td>
<td>1,575</td>
<td>--</td>
<td>$19,353</td>
<td>30,481,432</td>
</tr>
<tr>
<td>Fish Farms</td>
<td>124</td>
<td>894</td>
<td>$36,094</td>
<td>4,475,600</td>
</tr>
<tr>
<td>Golf Courses</td>
<td>5,393</td>
<td>652,553</td>
<td>$10,585</td>
<td>57,085,336</td>
</tr>
<tr>
<td>Polo Fields</td>
<td>486</td>
<td>58,806</td>
<td>$10,585</td>
<td>5,144,349</td>
</tr>
<tr>
<td>Turf Grass</td>
<td>779</td>
<td>94,259</td>
<td>$10,585</td>
<td>8,245,777</td>
</tr>
</tbody>
</table>

All financial figures are rounded off to the nearest dollar. Crop categories are as established by the Bureau of Reclamation.

(1) Includes acreage that is planted but not producing a harvestable crop.

(2) Yield is in animal units per month (AUM)
Bay Delta Conservation Plan would protect state’s water supply

California’s water delivery system, including the Sacramento-San Joaquin River Delta, is the source of drinking water for 25 million Californians and irrigation water for 3.75 million acres of farmland. Locally, it provides replenishment water for the Coachella Valley’s groundwater basin.

The system in the Delta relies on 100-year-old levees that are weak, poorly engineered and likely to collapse in the event of an earthquake. If that happens, sea water from the San Francisco Bay would rush into the Delta, turning freshwater into saltwater. The economic toll is estimated at $40 billion in losses in water supplies, farm production, wages, jobs and downed utilities.

Coachella Valley Water District and Desert Water Agency combined hold the equivalent of the third largest entitlement to the State Water Project in California. This water is utilized effectively to maintain the aquifer’s full ability to store water, prevent a decline in groundwater quality and minimize potential property damage due to subsidence.

If an earthquake were to have the catastrophic geological impact on the Delta that experts fear, water would continue to flow from the taps in the Coachella Valley, but without this valuable source of water, groundwater replenishment efforts would stop and severely impact the local economy.

To avoid a doomsday in the Delta, public water agencies, including CVWD, have been working with state and federal agencies, environmental organizations and other stakeholders to develop a comprehensive plan that would protect California’s water supply from this threat, protect local communities from flooding and devastation and restore the Delta’s ailing ecosystem.

The plan, known as the Bay Delta Conservation Plan, has two vital goals: long-term water supply reliability for California and a healthy Delta ecosystem. New infrastructure — either a tunnel or canal — would carry a carefully managed portion of the Delta’s freshwater supply underneath or around the Delta, rather than through the fragile ecosystem and away from the weak levees.

An infrastructure project of such magnitude will surely require compromise between stakeholders. The water district supports the efforts of the plan and cautions that the stakes are too high and the risks too great to not take advantage of this opportunity.
Responding to a boil order notice:

Bottled water
In the unlikely event that CVWD’s water system is compromised, you could be advised to not use tap water. Your first choice for replacing tap water for drinking and cooking should be bottled water. Everyone should include in their emergency supply kit a 7-day supply of bottled water (at least 1 gallon of water per person per day, plus extra water for pets). You can purchase commercially bottled water or store your own.

Boiled water
If you don’t have bottled water, you should use boiled tap water. Boiling water will kill most types of disease-causing organisms. If the water is unusually cloudy, murky or colored, filter it first through a clean cloth or allow it to settle and draw off the clear water for boiling. Then, bring to a rolling boil and leave for one minute.

Bleached water
If you are unable to boil water, your next best choice is to disinfect it with household bleach. Bleach will kill some (but not all) types of disease-causing organisms.

If the water is unusually cloudy, murky or colored, filter it first through a clean cloth or allow it to settle and draw off the clear water for disinfection. Then, add 1/8 teaspoon (or 8 drops) of regular, unscented liquid household bleach for each gallon of water, stir well and let it stand for 30 minutes before using. Store disinfected water in clean containers with covers. Never use scented, powdered or swimming pool bleach. These products may contain dangerous amounts of chemicals not intended for consumption. A faint chlorine smell is normal.

Emergency Preparedness & Drinking Water

How do I know if my tap water can be used for drinking and cooking?

In the event of a disaster, CVWD may issue a boil water notice as a precautionary measure if water quality is in doubt. CVWD will inspect and test the water system. If the test results are unacceptable, a boil water notice will be issued and remain in place until the problem is located and solved, and the water system tests are acceptable. Notification will be made through the media or direct contact and door hangers. CVWD’s web site (www.cvwd.org) and posted flyers in public spaces may also be used.

Is boiled tap water always safe to use?

It is possible that following a natural disaster, you will be notified that the tap water will need to be boiled before use for drinking and cooking. However, it is possible for tap water to be contaminated with a chemical that is not safe to consume even after boiling and may even be a risk during bathing. In this unlikely event, you will receive specific notification to not use the tap water for any purpose.

Your first choice for replacing tap water for drinking and cooking should be bottled water. Everyone should include in their emergency supply kit a 7-day supply of bottled water (at least 1 gallon of water per person per day, plus extra water for pets). Your next best choice is to disinfect the tap water with household bleach.

Can I use the water inside my water heater?

While bottled water is preferred, the water in your water heater can be used for drinking and cooking, provided that the water heater remains upright and you turn off the main water valve to your home immediately after the disaster occurs. To access this water, turn off the heating element and open the drain faucet at the bottom of the water heater. To start the water flowing, close the water intake valve at the top of the tank and open a hot water faucet in the home.

When CVWD announces that you can resume normal use of your tap water, don’t forget to refill the water heater before turning on the heating element.

Turn off sprinklers
A disaster may result in reduced water pressure and limited water supply, caused by leaks in the distribution system or by wells temporarily out of service. If this happens, it will be important to restrict water use to drinking, cooking and other emergency purposes, such as fire suppression.

Please turn off your irrigation sprinklers so you aren’t wasting what may be a limited supply on non-essential uses.
By the Numbers
(covers the reporting period January - December 2011)

Coachella Valley Water District is a local government agency formed in 1918 by the registered voters within the district.

Governing board: Five directors, representing five divisions and elected at-large to four-year terms.

Fields of service: Domestic water supply, treatment and distribution; wastewater collection and treatment; recycled water distribution; regional stormwater/flood protection; irrigation water importation and distribution; irrigation drainage collection; groundwater management and promotion of water conservation

Property valuation: Property within CVWD boundaries had a total combined assessed value in 2011 of $51,138,093,999 as fixed by Riverside and Imperial County assessors and state officials. This figure is used to determine property tax funding for the district.

General Information
- Employees: 487
- Total service area: 639,857 acres

Domestic Water

Service information
- Population served: 286,240
- Active accounts: 107,730
- Average daily demand: 91.8 mgd
- Total water delivered: 102,805 af

System information
- Active wells: 102
- Total well capacity: 249 mgd
- Distribution reservoirs: 59
- Storage capacity: 134 mg
- Distribution piping system: 1,986 miles

Canal Water

Service information
- Total irrigable acres: 78,530
- Active accounts: 1,145
- Total water delivered: 265,270 af
- Average daily demand: 727 af
- Maximum daily demand: 1,361 af

System information
- Reservoirs: 2
- Storage capacity: 1,301 af
- Distribution system: 485 miles
- Pumping plants: 17
- Length of canal: 123 miles

Agricultural Drainage
- Total on-farm drains: 2,298 miles
- Acreage with farm drains: 37,425
- District open drains: 21 miles
- District pipe drains: 166 miles

Wastewater

Service information
- Population served: 260,700
- Active accounts: 91,673
- Average daily flow: 17.8 mgd

System information
- Wastewater reclamation plants: 6
- Total daily plant capacity: 33.5 mgd
- Collection piping system: 1,086 miles

Recycled Water

Service information
- Active accounts: 16
- Average daily flow: 8.6 mgd

System information
- Wastewater reclamation plants producing recycled water: 3
- Total daily capacity: 18 mgd
- Distribution piping system: 16.3 miles

Groundwater Management
(In cooperation with Desert Water Agency)

- Recharge facilities: 4
- Recharge from imported water: 286,629 af
- Imported supply since 1973: 2,849,269 af

Stormwater Protection

Service area: 381,479 acres

System information
- Number of stormwater channels: 16
- Length of Whitewater River/Coachella Stormwater Channel: 49 miles
- Length of all regional flood protection facilities: 134 miles

af = acre-feet. An acre-foot of water is equal to 325,851 gallons, or enough water to cover one acre of land one foot deep.

mgd = million gallons per day.
Irrigation Guide

If you don't have a self-adjusting irrigation timer, use this guide to determine the approximate amount of water your landscaping needs each month. Individual watering times will vary due to soil and other conditions. Gradually reduce the amount of water to find an adequate amount for your situation without being wasteful.

January
Water-efficient shrubs
.7 gal./day ✦ 2 days/week
Grass spray system
4 min./day ✦ 7 days/week

March
Water-efficient shrubs
.9 gal./day ✦ 4 days/week
Grass spray system
9 min./day ✦ 7 days/week

May
Water-efficient shrubs
.9 gal./day ✦ 6 days/week
Grass spray system
15 min./day ✦ 7 days/week

July
Water-efficient shrubs
.9 gal./day ✦ 7 days/week
Grass spray system
16 min./day ✦ 7 days/week

September
Water-efficient shrubs
1 gal./day ✦ 5 days/week
Grass spray system
12 min./day ✦ 7 days/week

November
Water-efficient shrubs
.7 gal./day ✦ 3 days/week
Grass spray system
5 min./day ✦ 7 days/week

When there's measurable rain, turn your sprinkler system off and keep it off until the surface of the ground has dried!