2014 Domestic Water Quality Report

Coachella Valley Water District is committed to delivering high-quality drinking water that meets stringent government standards. This annual report documents that the water served to all CVWD customers (obtained from wells drilled into the Coachella Valley’s vast groundwater basin) meets state (California Department of Public Health) and federal (U.S. Environmental Protection Agency) drinking water quality standards.

CVWD is tasked with ensuring that drinking water standards are met. Highly trained employees monitor the water systems and collect drinking water samples that are tested at the district’s state-certified laboratory. A few specialized tests are performed by other certified laboratories. In addition to the detected constituents listed in the table on pages 8-9, CVWD’s Water Quality staff monitors for more than 100 other regulated and unregulated chemicals that are not detected during this monitoring.

CVWD is governed by a locally elected, five-member board of directors who normally meet in public session at 9 a.m. on the second and fourth Tuesdays of each month. Meeting notices rotate between the district's Coachella office at Avenue 52 & Highway 111 and the Steve Robbins Administration Building at 75-755 Horsetail Lane East in Palm Desert. Call the district to confirm meeting time, date and location.

The following report is written and provided in accordance with California Department of Public Health requirements.

For answers to common drinking water questions:
CVWD’s brochure, Tap Water You Can Trust, answers common questions about tap water including fluoridation, water softening and more.

Order this free publication using the postcard inside this annual report or online at www_cvwd.org

For more detailed information:
To receive a summary of the district’s source water assessments or additional water quality data or clarification, call the district’s Water Quality Section at (760) 398-2651.

Complete copies of source water assessments may be viewed at the Coachella Valley Water District, 85-995 Avenue 52, Coachella, CA 92236.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. También puede llamar al distrito de agua al número de teléfono (760) 398-2651.

What can I do about warm water coming out of my faucet?
If you experience warm water coming out of your faucet, try running the tap for a short time to see if the warm water within your home. Tip: Use a container to capture the warm water for other uses such as watering plants.

If the temperature does not drop within one minute, it is doubtful that continued flushing will improve the situation.

The best solution is to place a pitcher of tap water in the refrigerator for a ready supply of cold drinking water.

In some rare cases, during extreme conditions, water can come out of the cold water tap as high as 100 degrees.

What can I do about warm water coming out of my faucet?
If you experience warm water coming out of your faucet, try running the tap for a short time to see if the warm water within your home. Tip: Use a container to capture the warm water for other uses such as watering plants.

If the temperature does not drop within one minute, it is doubtful that continued flushing will improve the situation.

The best solution is to place a pitcher of tap water in the refrigerator for a ready supply of cold drinking water.

In some rare cases, during extreme conditions, water can come out of the cold water tap as high as 100 degrees.
Microsiemens per centimeter
— uS/cm —
Based on Level of a PHG or Public Health Goal —
PDWS or Primary Drinking Water Standard
picoCuries per liter. For uranium, one
NTU — Nephelometric turbidity units
Not applicable. The government has not set
mg/L — Level of
MCL or Maximum Contaminant Level —
AL or Regulatory Action Level
— The concentration is equivalent to 1 second in 31.7 years.
levels have monitoring and reporting requirements
Environmental Protection Agency.
there is no known or expected risk to health.
MCLGs are set by the
or maximum contaminant level goals as economically
requirements.
Definitions & Abbreviations
(Covering the reporting period January - December 2013)
This table lists those substances in the district’s three service areas. Gray boxes indicate no substance was detected or existing data is no longer reportable. The data on the chart, which summarizes results of the most recent monitoring completed between 2005 and 2013, shows that CVWD continues to deliver drinking water that meets state and federal water quality standards.

Breakdown of values in the Maximum Contaminant Level in (Column 3). Flawed limits in this water comply with the Maximum Contaminant Level of 2.0 mg/L. Therefore, one can show a level above the Maximum Contaminant Level and still comply with the drinking water standard when compliance is based on average levels found in each water source.

“Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-
compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immunosuppressed states, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium (a microbial pathogen found in surface water throughout the United States) and other microbial contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791 or www.epa.gov/drink” — California Department of Public Health

<table>
<thead>
<tr>
<th>Detected parameter, units</th>
<th>PHG or (MCLG)</th>
<th>Primary or secondary (MCL)</th>
<th>Cove Communities (Average)</th>
<th>Indio Hills, Sky Valley & areas adjacent to Desert Hot Springs (Average)</th>
<th>Desert Shores, Salton Sea Beach & Salton City Range (Average)</th>
<th>Major source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic, µg/L</td>
<td>0.004</td>
<td>10</td>
<td>ND-16 (ND)</td>
<td>Erosion of natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>N/A</td>
<td>(300, 600) (5)</td>
<td>7.2-120 (19)</td>
<td>19-26 (16)</td>
<td>250-460 (380)</td>
<td></td>
</tr>
<tr>
<td>Chlorine (as Cl₂), mg/L</td>
<td>MRDLG 4</td>
<td>4</td>
<td>ND-3.0 (0.3)</td>
<td>Result of drinking water chlorination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, µg/L</td>
<td>(100)</td>
<td>50</td>
<td>ND-23 (ND)</td>
<td>Erosion of natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Copper, mg/L</td>
<td>0.02</td>
<td>N/A</td>
<td>ND-21.7 (8)</td>
<td>Erosion of natural deposits</td>
<td>Internal corrosion of household plumbing</td>
<td></td>
</tr>
<tr>
<td>Copper, mg/L (homes tested/ sites exceeding AL)</td>
<td>0.3</td>
<td>AL<1.3</td>
<td>0.11</td>
<td>0.14</td>
<td>0.18</td>
<td>21 (20)</td>
</tr>
<tr>
<td>Fluoride, mg/L</td>
<td>None (1)</td>
<td>N/A</td>
<td>ND-0.2 (ND)</td>
<td>Eroding from natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Iron, µg/L</td>
<td>None (300)</td>
<td>N/A</td>
<td>ND-230 (ND)</td>
<td>Erosion of natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Nitrate (as NO₃), mg/L</td>
<td>None (0.5)</td>
<td>N/A</td>
<td>ND-0.9 (ND)</td>
<td>Erosion of natural deposits</td>
<td>Municipal and industrial waste discharges</td>
<td></td>
</tr>
<tr>
<td>Nitrite (as NO₂) , mg/L</td>
<td>45</td>
<td>45</td>
<td>ND-39.7 (6)</td>
<td>Erosion of natural deposits</td>
<td>Leaching from natural waters or natural deposits</td>
<td></td>
</tr>
<tr>
<td>pH, units</td>
<td>None (3)</td>
<td>N/A</td>
<td>ND-1.0 (ND)</td>
<td>Erosion of natural deposits</td>
<td>Naturally occurring organic materials</td>
<td></td>
</tr>
<tr>
<td>Sodium, mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td>ND-17 (7)</td>
<td>Erosion of natural deposits</td>
<td>Physical characteristic</td>
<td></td>
</tr>
<tr>
<td>Specific conductance, uS/cm</td>
<td>(1,600, 2,200)</td>
<td>240-1,100 (380)</td>
<td>530-830 (650)</td>
<td>1,600-2,400 (1,900)</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Sulfate, mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td>ND-280 (44)</td>
<td>Erosion of natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Total Coliform bacteria, positive samples/month</td>
<td>(0)</td>
<td>more than 5×</td>
<td>1-10</td>
<td>1-10</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>Total dissolved solids, mg/L</td>
<td>(1,000, 1,500)</td>
<td>140-700 (240)</td>
<td>330-540 (410)</td>
<td>900-1,500 (1,100)</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Total trihalomethanes, µg/L</td>
<td>N/A</td>
<td>80</td>
<td>ND-11 (8.1)</td>
<td>14</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Turbidity, NTU</td>
<td>None (5)</td>
<td>N/A</td>
<td>ND-0.8 (ND)</td>
<td>Leaching from natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Uranium, pCi/L</td>
<td>0.43</td>
<td>20</td>
<td>ND-14 (3.3)</td>
<td>Erosion of natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Vanadium, µg/L</td>
<td>N/A</td>
<td>ND-30</td>
<td>ND-39 (14)</td>
<td>Erosion of natural deposits</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(1) Includes the communities of Rancho Mirage, Thousand Palms, Palm Desert, Indian Wells, La Quinta, Mecca, Bermuda Dunes, North Shore, Hot Mineral Spa, portions of Desert Hot Springs, Cathedral City, Indio, Coachella Valley Thermal and other areas.
(2) The results are averages from the District’s three service areas.
(3) Includes the communities of Cove Communities and/or areas.
(4) The values listed are the upper and short-term consumer acceptance contaminant levels.
(5) The reported average represents the highest running annual average based on distribution system monitoring.
(6) Unregulated contaminants are those that can harm human health and the California Department of Public Health has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist both regulatory agencies in determining the occurrence of unregulated contaminants in drinking water and whether future regulatory action is warranted.
(7) The total dissolved solids value is for samples collected from the South Bay water source. It includes hardness, calcium, magnesium, and alkalinity.
(8) Systems that collect 40 or more samples per month.
(9) Systems that collect less than 40 samples per month.
(10) Los Angeles County Waterworks.
(11) Systems that collect 40 or more samples per month.
(12) Systems that collect less than 40 samples per month.

Footnotes:
(1) Includes the communities of Rancho Mirage, Thousand Palms, Palm Desert, Indian Wells, La Quinta, Mecca, Bermuda Dunes, North Shore, Hot Mineral Spa, portions of Desert Hot Springs, Cathedral City, Indio, Coachella Valley Thermal and other areas.
(2) The results are averages from the District’s three service areas.
(3) Includes the communities of Cove Communities and/or areas.
(4) The values listed are the upper and short-term consumer acceptance contaminant levels.
(5) The reported average represents the highest running annual average based on distribution system monitoring.
(6) Unregulated contaminants are those that can harm human health and the California Department of Public Health has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist both regulatory agencies in determining the occurrence of unregulated contaminants in drinking water and whether future regulatory action is warranted.
(7) The total dissolved solids value is for samples collected from the South Bay water source. It includes hardness, calcium, magnesium, and alkalinity.
(8) Systems that collect 40 or more samples per month.
(9) Systems that collect less than 40 samples per month.